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Abstract. This paper is devoted to some aspects of pole assignment by state feedback to the non-
square linear systems. Under the condition of weak regularizability necessary and sufficient conditions
for pole assignment are established.

I. Introduction

Consider a linear, time-invariant system in the form

Eẋ(t) = Ax(t) +Bu(t), t ≥ 0, x(0) = x0, (1)

where E,A ∈ Rq×n, B ∈ Rq×m with B of full column rank. The system (1) will be referred to as the
triple (E,A,B). Applying the state feedback

u(t) = Fx(t) + v(t), (2)

F ∈ Rm×n, to the system (1) gives the closed-loop system

Eẋ(t) = (A+BF )x(t) +Bv(t) (3)

where v(t) is a new external control input. The system (3) describes how we can change the behavior
of the system (1) by the state feedback (2).

Taking the Laplace transform of (1) the system can be written in the form (see the details on matrix
pencil in [1]) :

(sE − A)X(s) = BU(s) + Ex0, (4)

where X(s), U(s) denote the Laplace transforms of x(t), u(t), respectively.
The pole structure of the system (1) is defined by the zero structure of the pencil sE−A. Particularly,

the finite zero structure of sE − A is given by the invariant polynomials of sE − A, while the infinite
zero structure is defined by the negative powers of s occurring in the Smith-McMillan from at infinity
of sE − A [3]. The problems of pole structure assignment (PSA) and pole assignment (PA), which is
just a special case of PSA, are defined (see [3]) as follows:

Given a system (1), monic polynomials ψ1(s) � ψ2(s) � ... � ψr(s), (ψi � ψi+1 means that ψi+1

divides ψi) and integers d1 ≥ d2 ≥ ... ≥ dkd , under what conditions there exists a matrix F in (2) such
that the polynomials ψi(s) and integers di will be the invariant polynomials and infinite zero orders of
sE−A−BF .

The PA and PSA problems have been widely studied by many authors in the case of square systems.
The seminal work in this direction belongs to Rosenbrock. In the work [6] he gives necessary and
sufficient conditions for the PSA in the case of the explicit (E is square and invertible) and controllable
systems. This result is generalized [7] to the explicit and uncontrollable system. A generalization to



the square, implicit (E is singular) and controllable systems is given in [8]. Necessary and sufficient
conditions for the PA and necessary conditions for the PSA in the case of square (regularizable) system
are given in [3].

II. Background

As far as notation is concerned, mostly standard symbols are used, see [2, 3] for instance. If not,
they are defined just before used for the first time. A square system (1) is called regularizable if there
exists an F in (2) such that rank (sE − A−BF ) is full.

1. Feedback Canonical Form

Under the action of the feedback group, which consists of quadruples (P,Q,G, F ), where P, Q, G
are invertible matrices and F is an m × n matrix, each system (E,A,B) can be brought into the
feedback canonical form (FCF) described by the below introduced types of blocks (see details on FCF
in [4]), i.e.

(P,Q,G, F ) ◦ (E,A,B) = (PEQ,P (A+BF )Q,PBG) =: (EC , AC , BC)

These operations bring the pencil [sE−A −B] into the form in which

(sEC − AC) := blockdiag ({sEεi − Aεi}
kε
i=1 ; {sIσi −Nσi}

kσ
i=1 ; {sEqi − Aqi}

kq
i=1 ;

{sNpi+1 − Ipi+1}kpi=1 ; {sIli − Ali}
kl
i=1 ; {sEηi − Aηi}

kη
i=1)

where Eεi := [Iεi 0], Aεi := [0 Iεi ] ∈ Rεi×(εi+1), Eqi := [Iqi 0]T , Aqi := [0 Iqi ]
T ∈ R(qi+1)×qi , Eηi :=

[Iηi 0]T , Aηi := [0 Iηi ]
T ∈ R(ηi+1)×ηi , Nj is nilpotent matrix with the index of nilpotency j. The

quantities describing the corresponding blocks are called nonproper indices, ε1 ≥ . . . ≥ εkε ≥ 0;
proper indices, σ1 ≥ . . . ≥ σkσ > 0; almost proper indices, q1 ≥ . . . ≥ qkq ≥ 0; almost nonproper
indices, p1 ≥ . . . ≥ pkp > 0; the fixed invariant polynomials αi(s) = sli + ailis

li−1 + · · ·+ ai1s+ ai0,
(they represent the hidden finite modes of the system) α1 . α2 . · · · . αkl; row minimal indices of
[sEC − AC −BC ], η1 ≥ . . . ≥ ηkη ≥ 0.

The matrix BC is of the form BC := blockdiag {0, Bσ, Bq, 0, 0, 0}, where Bσ := blockdiag{
[0 · · · 01]T ∈ Rσi

}
, Bq := blockdiag

{
[0 · · · 01]T ∈ Rqi+1

}
.

2. Normal External Description

Definition 1. The matrices N(s), D(s) are said to form NED of the system (1) if they satisfy the
following conditions:

• [sE−A −B]

[
N(s)
D(s)

]
= 0 where

[
N(s)
D(s)

]
forms a minimal polynomial basis for Ker[sE−A −B].

•N(s) forms a minimal polynomial basis for KerΠ[sE−A] where Π is a maximal annihilator of B

It is assumed that the column degrees of
[
NT (s) DT (s)

]T are non-increasingly ordered.

For the square and regularizable systems the column degrees ci := degci
[
NT (s) DT (s)

]T are the
controllability indices of the system. When degciN(s) > degciD(s) (degciN(s) ≤ degciD(s)) such
degrees are called by nonproper (proper) controllability indices, i = 1, 2, . . . , kε + kσ. A square
regularizable system is called controllable iff

∑
i ci = rankE [5].

The action of the state feedback upon the system (EC , AC , BC) leads to

[sEC−AC−BCF −BC ]

[
NC(s)

DC(s)−FNC(s)

]
= 0



It should be noted that the NED of the system reflects only the information on the εi, σi- blocks
and does not depend on the quantities qi, pi, ηi and polynomials αi(s). These quantities represent the
hidden part of the system. More particularly, the zeros of αi(s) are the finite uncontrollable modes of
(1) while qi, pi give the orders of uncontrollable mode at infinity. To remedy this situation the matrix
BC is extended in such a way that the hidden part of the original system will appear in the NED. The
system (EC , AC , [BC BC ]) modified by this trick is called the extended system of (1) (see for details
[3]). The NED of the extended system is[

NT
E (s), DT

E(s)
]T

:=
[

diag {NT
C (s), N

T

C(s)}, diag {DT
C(s), D

T

C(s)}
]T

where NC(s), DC(s) form an NED of the hidden part of the system.
The matrix describing the modification of the system which can be done by a state feedback is in the

form

DEF (s) :=

[
DC(s)−FNC(s) −FNC(s)

0 DC(s)

]
=


D11(s) Sσ(s)+D12(s) D13(s) D14(s)D15(s)D16(s)
D21(s) D22(s) Sq+D23(s)D24(s)D25(s)D26(s)

0 0 −Ikq 0 0 0
0 0 0 −Ikp 0 0
0 0 0 0 Sα(s) 0
0 0 0 0 0 Sη(s)


where

Sσ := diag {sσi}kσi=1 , Sq := diag {sqi}kqi=1 , Sα := diag {αi(s)}kli=1 , Sη := blockdiag

{[
sηi

−1

]}kη
i=1

and Dij(s) are arbitrary matrices satisfying the conditions

degci

[
D1j(s)
D2j(s)

]
≤ degciNj(s), i = 1, 2, . . . , j = 1, 2, . . . , 6

To deal with finite and infinite zeros of the pencil in a unified way, the conformal mapping s =
(1 + aw)/w, where a ∈ R, a 6= 0 and is not a pole of (1), is used. Then the finite zero structure of the
pencil wẼC−ÃC at the point w = 0 determines the infinite zero structure of sEC−AC , where ẼC and
ÃC are the w-analogues of EC and AC that are derived by applying the conformal mapping upon the
system (1) (see [3] for detail). It should be noted that many properties of the system can be stated in
the terms of the matrix DEF (s) - see [2, 3].

Proposition 1. The following holds:
• The system (1) is regularizable by state feedback F in (2) if and only if kε = kq and kη = 0.
• The non unit invariant factors of both sEC−AC−BCF and DEF (s) coincide for any F .
• The infinite zero orders of sEC−AC−BCF and DEF (s)diag{s−ci} are the same.

This proposition allows us to reformulate the problems of studying the structure of sEC−AC−BCF
in terms of the structure DEF (s).

Proposition 2. Given a regularizable system (1) ( kε = kq and kη = 0), a monic polynomial ψ(s), and
an integer d ≥ 0, then there exists an F in (2) such that det(sE−A−BF ) = ψ(s) and the sum of the
infinite zero orders of sE−A−BF equals d if and only if the conditions (5) - (7) (and (8) if kε = 0) are
satisfied.

degψ(s) + d =
kε∑
i=1

εi +
kσ∑
i=1

σi +

kq∑
i=1

qi +

kp∑
i=1

pi +

kl∑
i=1

li (5)

ψ(s) . α1(s)α2(s)...αkl(s) (6)



d ≥
kq∑
i=1

qi +

kp∑
i=1

pi . (7)

degψ(s) =
kσ∑
i=1

σi +

kl∑
i=1

li (8)

III. Main results

A natural question arising here is under which conditions there exists a state feedback (2) yielding
the full rank pencil sE− A−BF .

Proposition 3. There exists an F in (2) such that the pencil sE−A−BF is of (a) full row rank if and
only if kε ≥ kq and kη = 0, or (b) full column rank if and only if kq ≥ kε.

Proof. For pencils having more columns than rows it easily follows, from the form of DEF (s), that
sE−A−BF is of full row rank if and only if (a) holds. In the case there are more rows than columns
and rank sE − A−BF is full, say n,

rank (sE − A−BF ) ≤ rank Π(sE − A) + rankB

where Π is a maximal annihilator of B. This condition is equivalent to

n− rank (sE − A−BF ) ≥ n− rank Π(sE − A)− rankB (9)

Then, as n− rank Π(s−A) is the number of the column minimal indices of [sE −A−B], that is to
say kε + kσ, and rankB = kσ + kq, it follows from (9) that 0 ≥ kε + kσ − kσ − kq and consequently
follows (b).

Conversely, if (a), or (b), holds for a pencil [sE−A −B], then it is always possible to find an F such
that sE −A−BF will be of full row or column rank. A construction of such an F is illustrated in the
example below.

Examle 1. Let

[sE − A −B] :=


s −1 0 0 0 0
0 0 s −1 0 0
0 0 0 0 −1 0
0 0 0 0 s −1


Defining F = [1, 0, 0, 0], the pencil

sE − A−BF =


s −1 0 0 0
0 0 s −1 0
0 0 0 0 −1
−1 0 0 0 s


is clearly of full row rank.

Notice that if the conditions (a) and (b) of Proposition 3 are satisfied simultaneously then system is
of full row and column rank, that is the condition on regularizability of the system follows.

The systems satisfying either (a) or (b) of Proposition 3 might be called weakly (row or column )
regularizable since we cannot speak of the characteristic polynomial assignment but just of the full
rank assignment, which implies that (at least) one of the principle (of order min{q, n}) minors of
sE−A−BF will be a prescribed polynomial and the corresponding submatrix will have a prescribed
sum of infinite zero orders.

If the systems are not weakly regularizable, we cannot speak about the pole assignment as it is not
well defined. The following example shows this point.



Examle 2. Let ε1 = η1 = 1 and σ1 = 3. Then the matrix DEF (s) is of the form

DEF (s) =

 α0 + α1s s3 + β2s
2 + β1s+ β0 γ

0 0 s
0 0 −1

 ,
which shows that there is no F resulting in DEF (s) (and hence sE − A−BF ) nonsingular.

Let ψ(s) denote a principal minor of DEF (s) (or equivalently a principal minor of sE−A−BF due

to Proposition 1) and ψ′
(s) be a principal minor of Dεσ(s) :=

[
D11(s) Sσ(s) +D12(s)
D21(s) D22(s)

]
. Consider

a weakly (row) regularizable system, i.e. kε > kq and kη = 0. Then the matrix DEF (s) can be made
row reduced with the matrix Dεσ(s) column reduced , see the procedure in the proof of Corollary 1 in
[3]. Then the maximal sum of the degrees of Dεσ(s) satisfy

degψ
′
(s) ≤

kq∑
i=1

εi +
kσ∑
i=1

σi (10)

The infinite zero structure is given by the qi, pi- blocks as the rank deficiency of D̃EF (w) at w = 0
equals to kq + kp. So, the the following condition must also be satisfied

d ≥
kq∑
i=1

qi +

kp∑
i=1

pi . (11)

The condition (6) is still necessary and if the conditions (10) and (11) are taken into account, we obtain

degψ(s) + d ≤
kq∑
i=1

εi +
kσ∑
i=1

σi +

kq∑
i=1

qi +

kp∑
i=1

pi +

kl∑
i=1

li (12)

The equality need not be satisfied at this case. When the system is weakly (column) regularizable
(kq ≥ kε) a similar condition to (12) can be derived and completed by the following inequalities.

degψ
′
(s) ≤

kε∑
i=1

εi +
kσ∑
i=1

σi (13)

d ≥
kq∑

i=kq−kε+1

qi +

kp∑
i=1

pi (14)

The conditions (10) - (14) give us just necessary conditions as far as the degree of principal minors are
concerned. The following example shows that they are not sufficient in general.

Examle 3. Let ε1 = 0 and σ1 = 3. Then the matrix DEF (s) is of the form

DEF (s) =
[
α0 s3 + β2s

2 + β1s+ β0
]

Then the degrees of principal minors are either 0 or 3, but never 1 or 2 even if they satisfy (12).

It can noticed that the maximal number of zeros assignable by state feedback (2), when (E,A,B)
is a weakly regularizable, is not increased by additional blocks of nonproper or almost proper indices
and row minimal indices of [sE − A −B]. There always exists an F such that

degψ(s) + d =
kr∑
i=1

εi +
kσ∑
i=1

σi +
kr∑
i=1

qi +

kp∑
i=1

pi +

kl∑
i=1

li

where r := min{kε, kq}. All the above observations are summarized in the following theorem.



Theorem 1. Given a weakly regularizable system (1) (i.e. kε ≥ kq and kη = 0 or kq ≥ kε), a monic
polynomial ψ(s), and an integer d ≥ 0, then there exists an F in (2) such that a principal minor of
sE − A− BF is equal to ψ(s) and the sum of the infinite zero orders of the corresponding submatrix
equals d if and only if the following conditions are satisfied:

degψ(s) + d =
kr∑
i=1

εi +
kσ∑
i=1

σi +
kr∑
i=1

qi +
kp∑
i=1

pi +
kl∑
i=1

li (15)

ψ(s) . α1(s)α2(s)...αkl(s) (16)

d ≥
kr∑
i=1

qi +

kp∑
i=1

pi . (17)

where r := min{kε, kq} .

IV. Conclusions

The problem of pole (structure) assignment for the non-square systems (1) is considered. If the
conditions (a) and (b) of Proposition 3 are satisfied then the problem is well defined. For such systems,
which we call weakly regularizable, necessary and sufficient conditions are established in Theorem 1.
The conditions are stated in terms of principal minors rather than in terms of invariant factors that are
used in [3], where necessary conditions (which are also sufficient only in various particular cases) are
established. Theorem 1 gives additional insight in the picture of modifying the poles of a singular
system by state feedback.
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